Telegram Group & Telegram Channel
Какой метод лучше оценивает неопределенность модели: deep ensembles или Monte-Carlo (MC) dropout

Deep ensembles чаще дают более точную оценку неопределенности, особенно на данных вне распределения (OOD).

Ключевые различия:
✔️ Deep ensembles — обучают несколько независимых моделей и усредняют их предсказания. Это улучшает устойчивость к OOD-данным и повышает точность вероятностных оценок.
✔️ MC-dropout — использует дропаут во время инференса для моделирования неопределенности, что дешевле вычислительно, но менее эффективно в сложных сценариях.



tg-me.com/ds_interview_lib/815
Create:
Last Update:

Какой метод лучше оценивает неопределенность модели: deep ensembles или Monte-Carlo (MC) dropout

Deep ensembles чаще дают более точную оценку неопределенности, особенно на данных вне распределения (OOD).

Ключевые различия:
✔️ Deep ensembles — обучают несколько независимых моделей и усредняют их предсказания. Это улучшает устойчивость к OOD-данным и повышает точность вероятностных оценок.
✔️ MC-dropout — использует дропаут во время инференса для моделирования неопределенности, что дешевле вычислительно, но менее эффективно в сложных сценариях.

BY Библиотека собеса по Data Science | вопросы с собеседований




Share with your friend now:
tg-me.com/ds_interview_lib/815

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

A Telegram spokesman declined to comment on the bond issue or the amount of the debt the company has due. The spokesman said Telegram’s equipment and bandwidth costs are growing because it has consistently posted more than 40% year-to-year growth in users.

Библиотека собеса по Data Science | вопросы с собеседований from tw


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA